
Automatic Synthesis of Agent Designs in UML

Johann Schumann1 and Jon Whittle2

1 RIACS / NASA Ames, Mo�ett Field, CA 94035 USA,
schumann@ptolemy.arc.nasa.gov

2 Recom / NASA Ames, Mo�ett Field, CA 94035 USA,
jonathw@ptolemy.arc.nasa.gov

Summary. It is anticipated that the UML, perhaps with domain-speci�c exten-
sions, will increasingly be used to model and analyse agent-based systems. Current
commercial tools for UML, however, contain a number of gaps that limit this growth
potential. As an example, there is little or no support for automatic translations be-
tween UML notations. We present one such translation | from sequence diagrams
to statecharts | and discuss how such an algorithm could be used in agent model-
ing. In contrast to other approaches, our algorithm makes a justi�ed merging of the
input sequence diagrams based on simple logical speci�cations of messages passed
between agents/objects, and detects conicting behaviors in di�erent sequence dia-
grams. In addition, we generate statecharts that make full use of hierarchy, leading
to generated designs that more closely resemble those which a designer might pro-
duce. This is important in the context of iterative design, since the designer will
likely want to modify the generated statecharts to re�ne their behavior.

1 Introduction

There has recently been interest in investigating how the Uni�ed Modeling
Language (UML) [2] can be applied to the modeling and analysis of agent-
based software systems. For example, the OMG Agent Working Group [6]
is attempting to unify object-oriented approaches and current methodolo-
gies for developing agent systems. The result is a proposal for augmenting
UML with agent-speci�c extensions (called Agent UML or AUML). This is
based on the observation that the development of large-scale agent-based
software requires modeling methods and tools that support the entire devel-
opment lifecycle. Agent-based systems are highly concurrent and distributed
and hence it makes sense to employ methodologies that have already been
widely accepted for distributed object-oriented systems. Indeed, agents can
be viewed as \objects with attitude" [3] and can themselves be composed out
of objects. On the other hand, agents have certain features not possessed by
objects | such as autonomy, the ability to act without direct external inter-
vention; and cooperation, the ability to independently coordinate with other
agents to achieve a common purpose. The precise nature of the relationship
between objects and agents is as yet unclear. However, we anticipate that
the use of UML (perhaps with further extensions) for modeling agent-based
systems will increase.

2 J. Schumann and J. Whittle

UML is essentially a collection of notations for modeling a system from dif-
ferent perspectives. Current commercial tools supporting UML (e.g., iLogix's
Rhapsody [12] and Rational's Rose [11]) can generate C++ or Java code from
statechart designs, but there is no support for translating between UML no-
tations themselves. The focus of our own research is in bridging this gap, and
to this end, we have developed an algorithm for translating UML sequence
diagrams into UML statecharts. Sequence diagrams model message passing
between objects, or in the case of agents, can be used to model communi-
cations between agents (i.e., agent interaction protocols). Statecharts take a
state-centric view and model the behavior of a class of objects as a collection
of concurrent, hierarchical �nite state machines. In agent-based systems, our
translation from sequence diagrams to statecharts can be used in:

� developing agent skeletons [14], which give abstract descriptions of agents
in terms of the events that are signi�cant for coordination with other
agents. Agent skeletons are important in studying interactions in multi-
agent systems. If conversation instances between agents are expressed as
sequence diagrams, our translation algorithm can generate agent skele-
tons semi-automatically. A similar approach is followed in [15] except
that conversations are described using Dooley graphs;

� developing behavioral models (i.e., statecharts) of agents that are com-
posed of objects. In this context, our algorithm generates initial models
from a collection of scenarios (sequence diagrams) of expected behavior.
We view this process as being highly iterative | the generated state-
charts will be re�ned by the user which feeds back to re�ned scenarios.
Because of this iterative approach, the generated statecharts must be
human readable | i.e., they must appropriately divide behavior into
orthogonal components, and include sensible use of hierarchy.

Our techniques apply equally to modeling agents and objects that make up
agents. For this reason, we will use `agent' and `object' interchangeably in
what follows.

A number of other approaches have been developed for translating from
scenarios to state machines (e.g., [7,9,8,16]), but our approach has a number
of advantages, namely:

� Scenarios will in general overlap. Most other approaches cannot recog-
nize intersections between scenarios. Our approach, however, performs a
justi�ed merging of scenarios based on logical descriptions of the com-
munications between agents. The communications are speci�ed using the
Object Constraint Language (OCL) [17] and allow identical states in dif-
ferent scenarios to be recognized automatically. This leads to statecharts
both with a vastly reduced number of states, and also corresponding more
to what a human designer would produce.

� Scenarios will in general conict with each other. Our algorithm �rst
detects and reports any conicts based on the speci�cations of the com-
munications.

Automatic Synthesis of Agent Designs in UML 3

� The statecharts generated by our algorithm are hierarchical and make

sensible use of concurrency. Much of this structure is detected automat-
ically from the communications speci�cations. Additional structure can
be deduced from user-speci�ed abstractions. This leads to generated stat-
echarts that are human-readable, not just huge, at state machines.

2 Example

We will use an ongoing example to illustrate our algorithm. The example
is that of an automated loading dock in which forklift agents move colored
boxes from (to) a central ramp to (from) colored shelves such that boxes
are placed on shelves of the same color. The example is presented as a case
study in [10] of a three-layered architecture for agent-based systems, in which
each agent consists of a reactive, a local planning and a coordination layer.
Each layer has responsibility for certain actions: the reactive layer reacts
to the environment and carries out plans sent from the planning layer; the
planning layer forms plans for individual agent goals; and the coordination
layer forms joint plans that require coordination between agents. We have
translated part of this example into UML as a case study for our algorithm.
Figure 1 gives the static structure of part of the system, represented as a UML
class diagram. Each class can be annotated with attributes (typed in OCL)
or associations with other classes. coordWith describes whether an agent is
currently coordinating its actions with another agent (0..1 is standard UML
notation for multiplicity meaning 0 or 1), and coordGoal gives the current
goal of this other agent. We assume that all agents communicate their goals
truthfully to other agents when asked. Agent interaction is based on a leader
election protocol which selects an agent to delegate roles in the interaction
(e.g., which agent should move away). leader describes whether an agent
is currently a leader. The �lled diamonds in the class diagram represent
aggregation (the `part-of' relationship).

Figures 2, 3 and 4 are sample sequence diagrams (SDs) for interaction
between two agents. SD1 is a failed coordination. Agent[i] attempts to estab-
lish a connection with Agent[j], but receives no response1, so moves around
Agent[j]. In SD2, the move is coordinated, and SD3 shows part of a proto-
col for Agent[j] to clear a space on a shelf for Agent[i]. Note that these are
actually extended sequence diagrams. `boxShelfToRamp' is a sub-sequence
diagram previously de�ned and `waiting' is a state explicitly given by the
user. More will be said about extended SDs in Section 3.2.

3 Methodology

An increasingly popular methodology for developing object-oriented systems
is that of use-case modeling [13], in which use-cases, or descriptions of the

1 tm is a timeout

4 J. Schumann and J. Whittle

name: String

Agent

Box
reactive

planning

1
1

1 1

0..1

hasBox
0..1

carries

hasAgent
0..1

Square
coordinate

1
1

hasShelf
0..1

coordWith
0..1

leader: Boolean
coordGoal:

enum{park,
boxToShelf,
shelfToRamp}

hands: enum{open,closed}

gripper: enum{up,down}

orient: enum{s,w,n,e}

y: Integer

x : Integer

Fig. 1. The loading dock domain

Agent[i]::
coordinate planning

Agent[i]:: Agent[i]::
reactive

Agent[j]::
planning
Agent[j]::

coordinate

waitingwaiting

Agent[j]::
reactive

encounterAgent(j,p)

requestCoord

grantCoord

sendGoal(park)

tm(5)

endCoord

moveAround

IF [orient=e and nFree()=true]

turn(left)

moveAhead()

turn(right)

gotoLandmark(p)

encounterAgent(j,p) encounterAgent(i,q)

encounterAgent(i,q)

Fig. 2. Agent Interaction (SD1).

Agent[i]::
coordinate planning

Agent[i]:: Agent[i]::
reactive

Agent[j]::
planning
Agent[j]::

coordinate

waitingwaiting

Agent[j]::
reactive

encounterAgent(j,p)

requestCoord

grantCoord

encounterAgent(j,p) encounterAgent(i,q)

sendGoal(park)

sendGoal(boxToShelf)

electLeader() electLeader()

isLeader

encounterAgent(i,q)

endCoord

gotoLandmark(p)

turn(right)

moveAhead()

turn(left)

moveAround
IF[orient=e and nFree()=true]

Fig. 3. Agent Interaction (SD2).

intended use of a system, are produced initially and are used as a basis for de-
tailed design. Each use case represents a particular piece of functionality from
a user perspective, and can be described by a collection of sequence diagrams.
[13] advocates developing the static model of a system (i.e., class diagram) at
the same time as developing the sequence diagrams. Once this requirements

Automatic Synthesis of Agent Designs in UML 5

Agent[i]::
coordinate planning

Agent[i]:: Agent[i]::
reactive

Agent[j]::
planning
Agent[j]::

coordinate

waitingwaiting

Agent[j]::
reactive

shelfFull

scanForAgents()

nearAgent(Agent[j])
nearAgent(Agent[j])

blocked

requestCoord

grantCoord

sendGoal(boxToShelf)

electLeader() electLeader()

isLeader

withdraw

turn(right)
moveAhead()

isLeader

boxShelfToRamp

sendGoal(shelfToRamp)

IF [orient=n]

Fig. 4. Agent Interaction (SD3).

phase has been completed, more detailed design can be undertaken, e.g., by
producing statecharts.

We leverage o� this approach and our algorithm �ts in as shown in Fig-
ure 5. From a collection of sequence diagrams, plus information from a class
diagram and an OCL speci�cation2, a collection of statecharts is generated,
one for each class. Note that the methodology is highly iterative | it is
not expected that the designer gets the class diagram, sequence diagrams,
or OCL speci�cation correct �rst time. On the contrary, sequence diagrams
will in general conict with each other or the OCL spec, be ambiguous, or be
missing information. The insertion of our algorithm enables some conicts to
be detected automatically and allows a much faster way of making modi�ca-
tions and seeing these modi�cations reected in the statechart designs. Note
that one statechart is generated for each class. This is in line with the way
in which statecharts are used in tools such as Rhapsody.

3.1 OCL speci�cation

The lack of semantic content in sequence diagrams makes them ambiguous
and di�cult to interpret, either automatically or between di�erent stake-
holders. In current practice, ambiguities are often resolved by examining the
informal documentation but, in some cases, ambiguities may go undetected
leading to costly software errors. To alleviate this problem, we encourage
the user to give pre/post-condition style OCL speci�cations of the messages
passed between objects. These speci�cations include the declaration of state
variables, where a state variable represents some important aspect of the sys-
tem, e.g., whether or not an agent is coordinating with another agent. This

2 OCL is a side-e�ect free set-based constraint language.

6 J. Schumann and J. Whittle

Class
Diagram

Sequence
Diagrams

OCL
specification

Statecharts

synthesis

iteration

Fig. 5. Use-case modeling with Statechart Synthesis.

OCL speci�cation allows the detection of conicts between di�erent scenarios
and allows scenarios to be merged in a justi�ed way. Note that not every mes-
sage needs to be given a speci�cation, although, clearly, the more semantic
information that is supplied, the better the quality of the conict detection.
Currently, our algorithm only exploits constraints of the form var = value,
but there may be something to be gained from reasoning about other con-
straints using an automated theorem prover or model checker.

Figure 6 gives speci�cations for selected messages in our agents example.
The state variables, in the form of a state vector, are used to characterize
states in the generated statechart. The state vector is a vector of values of
the state variables. In our example, the state vector has the form:

h coordWitĥ ; leader̂ ; coordGoal̂ i

where var̂ 2 Dom(var) [f?g, and ? represents an unknown value.

Our algorithm is designed to be fully automatic. The choice of the state
vector, however, is a crucial design task that must be carried out by the user.
The choice of state variables will a�ect the generated statechart, and the user
should choose state variables to reect the parts of the system functionality
that is of most interest. In this way, the choice of the state vector can be seen
as a powerful abstraction mechanism | indeed, the algorithm could be used
in a way that allows the user to analyse the system from a number of di�erent
perspectives, each corresponding to a particular choice of state vector.

The state variables can be chosen from information present in the class
diagram. For instance, in our example, the state variables are either attributes
of a particular class or based on associations. The choice is still a user activity,
however, as not all attributes/associations are relevant.

Automatic Synthesis of Agent Designs in UML 7

coordWith : enum f0,1g

leader : Boolean

coordGoal : enum fpark, boxToShelf, shelfToRampg

context grantCoord

pre: coordWith = 0

post: coordWith = 1

context sendGoalBoxToShelf
post: coordGoal = boxToShelf

context sendGoalShelfToRamp

post: coordGoal = shelfToRamp

context electLeader
pre: leader = false

context isLeader
post: leader = true

context endCoord
pre: coordWith = 1

post: coordWith = 0 and leader = false

Fig. 6. Domain Knowledge for the Loading Dock Example.

3.2 Extended Sequence Diagrams

Other authors ([5,4]) have already noted that the utility of sequence diagrams
to describe system behavior could be vastly increased by extending the no-
tation. A basic SD supports the description of exemplary behavior | one
concrete interaction | but when used in requirements engineering, a gener-

ative style is more appropriate, in which each SD represents a collection of
interactions. Extensions that have been suggested include the ability to allow
case statements, loops and sub-SDs. We go further than this and advocate
the use of language constructs that allow behavior to be generalized. Example
constructs we have devised so far include:

� any order(m1 ; : : : ;mn): specify that a group of messages may occur in
any order;

� or(m1; : : : ;mn): a message may be any one of a group of messages;

� generalize(m;SubSD): a message gives the same behavior when sent/
received at any point in the sub-sequence diagram;

� allInstances(m; I): send a message to all instances in I ;

These extensions signi�cantly augment the expressiveness of sequence dia-
grams and their utility in describing system behaviors.

8 J. Schumann and J. Whittle

4 Generating Statecharts

Synthesis of statecharts is performed in four steps: �rst, each sequence dia-
gram is annotated with state vectors and conicts with respect to the domain
knowledge are detected. As the second step, the annotated SD is converted
into a at statechart. In the next step, statecharts for each class are merged
into a single statechart per class. Finally, hierarchy is introduced in order to
enhance readability of the synthesized statecharts.

4.1 Step I: Annotating Sequence Diagrams with State Vectors

The process to convert an individual SD into a statechart starts by detecting
conicts between the SD and the domain knowledge (and hence, other SDs).
There are two kinds of constraints imposed on a SD: constraints on the state
vector given by the OCL speci�cation, and constraints on the ordering of
messages given by the SD itself. These constraints must be solved and con-
icts be reported to the user. Conicts mean that either the scenario does not
follow the user's intended semantics or the domain knowledge is incorrect.

More formally, the process of conict detection can be written as follows.
An annotated sequence diagram is a sequence of messages m1; : : : ;mn, with

s
pre
0

m1�! s
post
0

; s
pre
1

m2�! : : :
mr�1

�! s
post
r�1 ; s

pre
r

mr�! spostr (1)

where the s
pre
i , s

post
i are the state vectors immediately before and after mes-

sage mi is executed. Si will be used to denote either s
pre
i or s

post
i ; s

pre
i [j]

denotes the element at position j in s
pre
i (similarly for s

post
i).

In the �rst step of the synthesis process, we assign values to the variables
in the state vectors as shown in Figure 7. The variable instantiations of the
initial state vectors are obtained directly from the message speci�cations
(lines 1,2): if message mi assigns a value y to a variable of the state vector in
its pre- or post-condition, then this variable assignment is used. Otherwise,
the variable in the state vector is set to an undetermined value ?. Since each
message is speci�ed independently, the initial state vectors will contain a lot
of unknown values. Most (but not all) of these can be given a value in one
of two ways: two state vectors, Si and Sj (i 6= j), are considered the same if
they are uni�able (line 6). This means that there exists a variable assignment
� such that �(Si) = �(Sj). This situation indicates a potential loop within a
SD. The second means for assigning values to variables is the application of
the frame axiom (lines 8,9), i.e., we can assign unknown variables of a pre-
condition with the value from the preceeding post-condition, and vice versa.
This assumes that there are no hidden side-e�ects between messages.

A conict (line 11) is detected and reported if the state vector immediately
following a message and the state vector immediately preceding the next
message di�er.

Automatic Synthesis of Agent Designs in UML 9

Input. An annotated SD
Output. A SD with extended annotations

1 for each message mi do

2 if mi has a precondition vj = y then s
pre
i [j] := y else s

pre
i [j] := ? �

3 if mi has a postcondition vj = y then s
post
i [j] := y else s

post
i [j] := ? �

4 for each state vector S do

5 if there is some S0 6= S and some uni�er � with �(S) = �(S0) then
6 unify Si and Sj ;
7 propagate instantiations with frame axiom:

8 for each j and i > 0 : if s
pre
i [j] = ? then s

pre
i [j] := s

post
i�1 [j] �

9 if s
post
i [j] = ? then s

post
i [j] := s

pre
i [j] �

10 if there is some k; l with s
post
k [l] 6= s

pre
k+1[l] then

11 Report Conict;
12 break;

Fig. 7. Extending the state vector annotations.

Example. Figure 8 shows how SD2 from Figure 3 is annotated, and how
the values of the state vectors are propagated (Figure 9). In our case, there
are no conicts with the domain knowledge, and a loop (marked by a dashed
line) is detected due to successful uni�cation of di�erent state vectors.

<0,f,?>

<?,t,?>

...

<?,?,boxToShelf>

<1,?,?>

<?,f,?>

<0,?,?>

<1,?,?>

Agent[i]::
coordinate planning

Agent[i]::
reactive

Agent[j]::
coordinate

waiting

encounterAgent(j,p)

requestCoord

grantCoord

encounterAgent(j,p)

sendGoal(park)

sendGoal(boxToShelf)

isLeader

endCoord

gotoLandmark(p)

turn(right)

moveAhead()

turn(left)

moveAround
IF[orient=e and nFree()=true]

Agent[i]::

electLeader()

Fig. 8. SD2 (parts) with state vectors
h coordWitĥ ; leader̂ ; coordGoal̂ i.

<1,f,boxToShelf>

<0,f,boxToShelf>

<0,f,boxToShelf>

<1,t,boxToShelf>

<1,t,boxToShelf>

<1,f,boxToShelf>
<1,f,boxToShelf>

...

Agent[i]::
coordinate planning

Agent[i]:: Agent[i]::
reactive

Agent[j]::
coordinate

waiting

encounterAgent(j,p)

requestCoord

grantCoord

encounterAgent(j,p)

sendGoal(park)

sendGoal(boxToShelf)

isLeader

endCoord

gotoLandmark(p)

turn(right)

moveAhead()

turn(left)

moveAround
IF[orient=e and nFree()=true]

electLeader()

Fig. 9. SD2 after extension of state vec-
tor annotations.

10 J. Schumann and J. Whittle

4.2 Step II: Translation into a Finite State Machine

Once the variables in the state vectors have been instantiated as far as pos-
sible, a at statechart (in fact, a �nite state machine (FSM)) is generated
for each individual SD, one for each involved agent or object in the SD. The
�nite state machine for agent A is denoted by �A; its set of nodes by NA;
its transitions by hn1; htype; labeli; n2i for nodes n1, n2 where type is either
event or action3; and �A is a function mapping a node to its state vector. CA
denotes the currently processed node during the run of the algorithm. Mes-
sages directed towards a particular agent, A (i.e., mto

i = A) are considered

events in the FSM for A. Messages directed away from A (i.e., mfrom
i = A)

are considered actions.
The algorithm for this synthesis is depicted in Figure 10. Given a SD, the

algorithm constructs one FSM for each agent (or for each object, in case we
consider agents consisting of objects) mentioned in the sequence diagram. We
start by generating a single starting node n0Ai

for each FSM (line 2). Then
we successively add outgoing and incoming messages to the FSMs, creating
new nodes as we proceed (lines 7-9).

An important step during FSM creation is the identi�cation of loops: a
loop is detected if the state vector immediately after the current message has
been executed is the same as an existing state vector and if this message is

state-changing, i.e., s
pre
i 6= s

post
i . Note that some messages may not have a

speci�cation, hence they will not a�ect the state vector. To identify states
based solely on the state vector would result in incorrect loop detection.

4.3 Step III: Merging multiple Sequence Diagrams

The previous steps concerned the translation of a single sequence diagram.
For merging multiple sequence diagrams, our approach is �rst to convert
each SD individually into a at statechart, and then merge these statecharts
into a single one. In order to reduce the size of the resulting statechart, it is
important to identify as many common nodes and branches as possible.

Merging statecharts derived from di�erent SDs is based upon identifying
similar states in these statecharts. Two nodes of a statechart are similar if
they have the same state vector and they have at least one incoming transition
with the same label. The �rst condition alone would produce an excessive
number of similar nodes since some messages do not change the state vector.
The additional required existence of a common incoming transition means
that in both cases, an event has occurred which leaves the state variables in
an identical assignment. Hence, our de�nition of similarity takes into account
the ordering of the messages and the current state. Figure 11 shows how two

3 In statecharts, a transition is labeled by e=a which means that this transition can
be active only if event e occurs. Then, the state changes and action a is carried
out. We use a similar notion in our de�nition of FSMs

Automatic Synthesis of Agent Designs in UML 11

Input. A SD, S, with agents A1; : : : ; Ak and messages m1; : : : ; mr

Output. A FSM �Ai
for each agent, 1 � i � k.

1 for i = 1; : : : ; k do

2 Create a FSM, �Ai
, with a initial node, n0Ai

; CAi
:= n0Ai

;
4 for i = 1; : : : ; r do

5 add(mi; action;m
from
i);

6 add(mi; event;m
to
i);

8 where add(mess m, type t, agent A)
9 if there is a node n 2 NA, a transition hCA; ht;mi; ni

10 and s
post
i = �A(n) then

11 CA := n;

14 else if there is n 2 NA with s
post
i = �A(n)

15 and mi is state-changing then
16 add new transition hCA; ht;mi; ni;
17 CA := n;
19 else

20 add a new node n and let �A(n) := s
post
i ;

21 add transition hCA; ht;mi; ni;
22 CA := n;

Fig. 10. Translating a sequence diagram into FSMs.

nodes with identical state vector S and incoming transitions labeled with l

can be merged together.

S S

S1 S2 S1 S2

S

l l l l

Fig. 11. Merging of similar states (before and after the merge). .

The process of merging multiple statecharts proceeds as follows: we gen-
erate a new statechart and connect its initial node by empty �-transitions
with the initial nodes of the individual statecharts derived from each SD.
Furthermore, all pairs of nodes which are similar to each other are con-
nected by �-transitions. Then we remove �-transitions, and resolve many
non-deterministic branches. For this purpose, we use an algorithm which is a
variant of the standard algorithm for transforming a non-deterministic �nite
automaton (NFA) into a deterministic �nite automaton (DFA) [1]4.

4 Note that the output of the algorithm is only deterministic in that there are no
�-transitions remaining. There may still be two transitions leaving a state labelled

12 J. Schumann and J. Whittle

5 Introducing Hierarchy

So far, we have shown how to generate FSMs without any hierarchy. In prac-
tice, however, statechart designs tend to get very large and so the judicious
use of hierarchy and orthogonality is crucial to the readability and main-
tainability of the designs. There are several issues which comprise a \well-
designed" statechart (see, for example, [?]). They include the consolidation of
related behavior, the separation of unrelated behavior, and the introduction
of meaningful abstractions. Our approach allows several ways for introducing
hierarchy into the generated FSMs: using implicit information present in the
state vectors, introducing generalizations, and using information explicitly
given by the user (e.g., in a UML class diagram). These techniques will be
discussed in the following.

5.1 Using the State Vector

State variables usually encode that the system is in a speci�c mode or state
(e.g., holding a box or not). Thus it is natural to partition the statechart into
subcharts containing all nodes belonging to a speci�c mode of the system.
More speci�cally, we recursively partition the set of nodes according to the
di�erent values of the variables in the state vectors. In general, however, there
are many di�erent ways of partitioning a statechart, not all of them suited
for good readability.

Thus, we introduce additional heuristic constraints (controlled by the
user) on the layout of the statechart:

1. the maximum depth of hierarchy. Too many nested levels of compound
states limit readability of the generated statechart. On the other hand, a
statechart which is too at contains very large compound nodes, making
reading and maintaining the statechart virtually impossible.

2. the maximum number of states on a single level. This constraint is or-
thogonal to the �rst one and also aims at generating \handy" statecharts.

3. the maximum percentage of inter-level transitions. Transitions between
di�erent levels of the hierarchy usually limit modularity, but occasionally
they can be useful. Thus their relative number should be limited (usually
around 5-10%).

4. a partial ordering over the state variables. This ordering describes the
sequence in which partitions should be attempted. It provides a means to
indicate that some state variables may be more \important" than others
and thus should be given priority. The ordering encapsulates important
design decisions about how the statechart should be split up.

with the same events but di�erent actions. Hence, our algorithm may produce
non-deterministic statecharts, which allows a designer to re�ne the design later.

Automatic Synthesis of Agent Designs in UML 13

In general, not all of the above constraints can be ful�lled at the same time.
Therefore our algorithm has to have the capability to do a search for an opti-
mal solution. This search is done using backtracking (currently over di�erent
partial orders) and is strictly limited to avoid excessive run-times.

Example. Figure 12 gives a partitioned statechart for agent communication
generated from SD1, SD2 and SD3. The at statechart was �rst split over
coordWith, followed by leader and �nally coordGoal.

encounterAgent(j,p)/
requestCoord

nearAgent(Agent[j])

blocked/
requestCoord

/withdraw

isLeader

withdrawRet/

moveAroundRet/

endCoord

/sendGoal(boxToShelf)

/sendGoal(Park)

tm(5)/endCoord sendGoal(boxToShelf)/
electLeader()

electLeader()

isLeader/

grantCoord/

/moveAround()

coordWith=1

coordWith=0

leader=t

coordGoal=shelfToRamp

coordGoal=boxToShelf

leader=false

leader=true

sendGoal(shelfToRamp)/

Fig. 12. Hierarchical Statechart for Agent[i]::coordinate.

5.2 Hierarchy by Language Constructs

Section 3.2 introduced extended sequence diagrams. The actual constructs
used in these sequence diagrams can also be used to introduce hierarchy
into the generated statechart. As an example, any order(m1; : : : ;mn) can
be implemented by n concurrent statecharts (see Figure 13), connected by
the UML synchronization operator (the black bar) which waits until all its
source states are entered before its transition is taken. This is particularly
useful if m1; : : : ;mn are not individual messages, but sub-sequence diagrams.
Figure 13 shows how the other constructs mentioned in Section 3.2 can be
implemented as statecharts. allInstances is implemented by a local variable
that iterates through each instance, and sends the message to that instance.

14 J. Schumann and J. Whittle

m1 m2 m1 m2

m

[i>n]

[i<=n]/
m->s->at(i);i:=i+1

n=I->size, i=1

allInstances

any_order

generalize

or

Fig. 13. Hierarchy by Macro Commands.

6 Conclusions

In this paper, we have presented an algorithm for automatically generating
UML statecharts from a set of sequence diagrams. For the development of
large-scale agent-based systems, sequence diagrams can be a valuable means
to describe inter-agent communication. We extend sequence diagrams with
additional language constructs to enable generalizations and augment them
with communication pre- and post-conditions in OCL. This enables us to
automatically detect and report conicts between di�erent sequence diagrams
and inconsistencies with respect to the domain theory. These annotations are
furthermore used in our algorithm to correctly identify similar states and to
merge a number of sequence diagrams into a single statechart. In order to
make the algorithm practical, we introduce hierarchy into the statechart.

A prototype of this algorithm has been implemented in Java and so far
used for several smaller case-studies in the area of agents, classical object-
oriented design [18], and human-computer interaction. In order to be practical
for applications on a larger scale, our future work includes a tight integration
of our algorithm into a state-of-the-art UML-based design tool.

The algorithm described in this paper only describes the forward or syn-
thesis part of the design cycle: given a set of SDs, we generate a statechart. For
full support of our methodology, research and development in two directions
are of major importance: conicts detected by our algorithm must not only
be reported in an appropriate way to the designer but also should provide ex-
planation on what went wrong and what could be done to avoid this conict.

Automatic Synthesis of Agent Designs in UML 15

We will use techniques of model-generation, abduction, and deduction-based
explanation generation to provide this kind of feed-back.

The other major strand for providing feed-back is required when the user,
after synthesizing the statechart, re�nes it or makes changes to the statechart.
In that case, it must be checked if the current statechart still reects the
requirements (i.e., the sequence diagrams), and in case it does, must update
the sequence diagrams (e.g., by adding new message arrows).

The question if UML (or AUML), is an appropriate methodology for the
design of large-scale agent-based systems must still be answered. A part of
the answer lies in the availability of powerful tools which facilitate the devel-
opment of agents during all phases of the iterative life-cycle. We are con�dent
that our approach to close the gap between requirements modeling using se-
quence diagrams and design with statecharts will increase acceptability of
UML methods and tools for the design of agent-based systems.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. G. Booch, I. Jacobson, and J. Rumbaugh. The Uni�ed Modeling Language User
Guide. Addison-Wesley, 1998.

3. J. Bradshaw. Software Agents. American Association for Arti�cial Intelligence
/ MIT Press, 1997.

4. R. Breu, R. Grosu, C. Hofmann, F. Huber, I. Kr�uger, B. Rumpe, M. Schmidt,
and W. Schwerin. Exemplary and complete object interaction descriptions. In
Computer Standards and Interfaces, volume 19, pages 335{345, 1998.

5. T. Gehrke and T. Firley. Generative sequence diagrams with textual anno-
tations. In Spies and Sch�atz, editors,Formal Description Techniques for Dis-
tributed Systems (FBT99), pages 65{72, M�unchen, 1999.

6. OMG Agent Working Group. Agent technology Green Paper. Technical Report
ec/2000-03-01, Object Management Group, March 2000.

7. I. Khriss, M. Elkoutbi, and R.K. Keller. Automating the synthesis of UML
statechart diagrams from multiple collaboration diagrams. In J. Bezivin and
P.A. Muller, editors, UML98: Beyond the Notation, pages 132{147. Springer-
Verlag, 1999. LNCS 1618.

8. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing software architecture de-
scriptions from Message Sequence Chart speci�cations. In Automated Software
Engineering, pages 192{195, Honolulu, Hawaii, 1998.

9. T. M�annist�o, T. Syst�a, and J. Tuomi. SCED report and user manual. Report
A-1994-5, Dept of Computer Science, University of Tampere, 1994.

10. J. M�uller. The Design of Intelligent Agents. Springer, 1996. LNAI 1177.
11. Rational Rose. Rational Software Corporation, Cupertino, CA, 1999.
12. Rhapsody. I-Logix Inc., Andover, MA, 1999.
13. D. Rosenberg and K. Scott. Use Case Driven Object Modeling with UML.

Addison Wesley, 1999.
14. M. Singh. A customizable coordination service for autonomous agents. In Intel-

ligent Agents IV: 4th International Workshop on Agent Theories, Architectures,
and Languages, 1998.

16 J. Schumann and J. Whittle

15. M. Singh. Developing formal speci�cations to coordinate heterogeneous au-
tonomous agents. In International Conference on Multi Agent Systems, pages
261{268, 1998.

16. S. Som�e and R. Dssouli. From scenarios to timed automata: building speci�-
cations from users requirements. In Asia Paci�c Software Engineering Confer-
ence, pages 48{57, 1995.

17. J.B. Warmer and A.G. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 1999.

18. J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios.
International Conference on Software Engineering (ICSE), 2000.

